About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Processing-in-memory and near-memory computing have recently been rediscovered as a way to alleviate the "memory wall problem" of traditional computing architectures. In this paper, we discuss the implementation of a 3D-stacked near-memory accelerator, targeting radio astronomy and scientific applications. After exploring the design space of the architecture by focusing on minimizing the execution power of the processing pipeline of the SKA1-Low central signal processor, we show that our accelerator can achieve an energy efficiency of up to 390 GFLOPS/W, corresponding to an energy consumption one order of magnitude lower than alternative state-of-the-art implementations. When running additional mathematical and streaming-oriented kernels, our accelerator achieves from 6.4× to 20× energy efficiency improvement compared to alternative solutions.