About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Topics generated by topic models are typically presented as a list of topic terms. Automatic topic labelling is the task of generating a succinct label that summarises the theme or subject of a topic, with the intention of reducing the cognitive load of end-users when interpreting these topics. Traditionally, topic label systems focus on a single label modality, e.g. textual labels. In this work we propose a multimodal approach to topic labelling using a simple feedforward neural network. Given a topic and a candidate image or textual label, our method automatically generates a rating for the label, relative to the topic. Experiments show that this multimodal approach outperforms single-modality topic labelling systems.