About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS AMI
Paper
Motion of Fullerenes around Topological Defects on Metals: Implications for the Progress of Molecular Scale Devices
Abstract
Research on motion of molecules in the presence of thermal noise is central for progress in two-terminal molecular scale electronic devices. However, it is still unclear what influence imperfections in bottom metal electrode surface can have on molecular motion. Here, we report a two-layer crowding study, detailing the early stages of surface motion of fullerene molecules on Au(111) with nanoscale pores in a n-tetradecane chemical environment. The motion of the fullerenes is directed by crowding of the underlying n-tetradecane molecules around the pore fringes at the liquid-solid interface. We observe in real-space the growth of molecular populations around different pore geometries. Supported by atomic-scale modeling, our findings extend the established picture of molecular crowding by revealing that trapped solvent molecules serve as prime nucleation sites at nanopore fringes.