About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
THETA 2010
Conference paper
Molecular dynamics simulations of oblique phonon scattering at semiconductor interfaces
Abstract
Equilibrium molecular dynamics simulations are used to determine the transmission probability of oblique phonons scattering on flat and rough surfaces. The transmission is determined from the total energy change of the materials comprising the interface. We consider semiconductor films of silicon (Si) and germanium (Ge) as interfacing materials. A symmetric sawtooth (triangular) structure of varying height (similar to that analyzed in Appl. Phys. Lett., 93(8), 2008) is used to introduce surface roughness. We have found that the transmission is a strong function of the phonon incident angle, frequency, mass ratio of the comprising semiconductors and roughness height. An interesting behavior in the transmission probability is observed with the introduction of controlled surface roughness. Low frequency phonons can have transmission values higher than those predicted in the acoustic limit. Conversely, they decrease significantly for high frequency phonons. Maximum and minimum values in the transmission probability are found for surface roughness of 4.34 nm height. © 2010 IEEE.