About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IFSA - NAFIPS 2001
Conference paper
Modeling the real world for data mining: Granular computing approach
Abstract
In logic, a "real world" is modeled by a Cantor set with relational structure. In this paper, the relational structure is confined to the simples kind, namely, binary relations. From different consideration, in granular computing, such a binary relational structure has been called a crisp/fuzzy binary granulation, or binary neighborhood system (BNS/FBNS). Intuitively, the set has been granulated into binary neighborhoods (generalized equivalence classes). Combining the two views, the simplest kind of "real world" model is BNS-space. From this view, the classical relational theory is the knowledge representation of the universe whose structure is a finite set of equivalence relations; in a "real world" relational theory, a finite set of crisp/fuzzy binary relations. Here knowledge representation is assigning meaningful names to binary neighborhoods (or equivalence classes in relational theory). Depending on the structures, the model can be useful in fuzzy logic or data mining. The focus of this paper is on data mining using granular computing. Experiments show that the computing is extremely fast and the cost of computing extra semantics is very small.