About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICEE 2014
Conference paper
Modeling of gate-induced drain leakage mechanisms in silicon-germanium channel pFET
Abstract
Silicon-Germanium is used as an alternative channel material for pFET in high-k metal gate-first technologies for 32 nm and beyond. However, gate-induced drain leakage (GIDL) is significant at nominal bias due to band-to-band tunneling (BTBT) at the gate-to-drain overlap surface and gate sidewall junctions. In this work, the results of numerical simulation are compared with experimental results for SiGe channel pFET and the calibrated models are used to describe the GIDL mechanisms in the dominant region for various drain and gate bias voltages. The simulation results correspond well with the experimental data, illustrating that the models presented in this paper can be used to describe the GIDL mechanisms and help to reduce the overall leakage budget for low-leakage, high-threshold voltage (HVT) device designs.