SPIE Photonics West 2023
Conference paper

Modeling carbon dioxide trapping at microscopic pore scale with digital rock representations

View publication


Geological sequestration of CO2 in the pore space of subsurface rock formations offers a safe and permanent carbon storage solution. In this work, we present the application of a pore-scale flow simulator to the study of CO2 storage in geological formations. We model the rock pore space geometry, extracted from high-resolution X-ray microtomography images of suitable rocks as a network of connected capillaries. Assuming piston-like flow within each capillary and conservation of mass at each network node, a large system of equations can be solved to compute properties like pressure distribution or flow rate at each point in the network. Multi-phase flow simulations track the displacement in time of the fluid interface within each capillary. These dynamic simulations on the high-resolution capillary network representation of the rock are very computationally costly. Alternatively, analysis is carried out on the aggregate results of multiple two-phase flow simulations on several statistically equivalent capillary network models of the rock sample, which retain topological properties of the original at a significantly lower computational cost. We performed a sensitivity analysis with respect to multiple fluid parameters, such as viscosity, interfacial tension, contact angle, pressure, and temperature, and quantify their influence on the infiltration and retention of CO2 inside a capillary network that is representative of an actual rock.