About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JACerS
Paper
Model for the Effect of Powder Packing on the Driving Force for Liquid‐Phase Sintering
Abstract
A model for liquid‐phase sintering is presented that explicitly considers the effect that the pore size distribution of the sintering compact has on the capillary forces that drive densification. In particular, the effect that liquid redistribution in the pore structure has on the driving force for sintering is considered under the assumption that the liquid can easily move to find a low‐energy configuration in the pore structure. It is shown that, for a powder compact that has a narrow pore size distribution, densification exhibits approximately the same time dependencies as those predicted by the Kingery model for liquid‐phase sintering. However, systematic changes in the absolute densification rate with the volume fraction of liquid, and the mean and breadth of the pore size distribution, are predicted. With more extreme pore size distributions, such as a bimodal distribution, behavior significantly different from that predicted by Kingery is found. In particular, it is predicted that, without there being a change in sintering mechanism, abrupt changes in densification rate may occur if the peaks in the bimodal distribution are well separated. The model provides a rational basis for interpreting how powder packing and processing steps can influence densification by liquid‐phase sintering. Copyright © 1993, Wiley Blackwell. All rights reserved