About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EuroSys 2018
Conference paper
Model-Driven Computational Sprinting
Abstract
Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.