About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Review
Mobility in semiconducting carbon nanotubes at finite carrier density
Abstract
Carbon nanotube field-effect transistors operate over a wide range of electron or hole density, controlled by the gate voltage. Here we calculate the mobility in semiconducting nanotubes as a function of carrier density and electric field, for different tube diameters and temperatures. The low-field mobility is a nonmonotonic function of carrier density and varies by as much as a factor of 4 at room temperature. At low density, with increasing field the drift velocity reaches a maximum and then exhibits negative differential mobility, due to the nonparabolicity of the bandstructure. At a critical density, p c ∼ 0.35-0.5 electrons/nm, the drift velocity saturates at around one-third of the Fermi velocity. Above p c, the velocity increases with field strength with no apparent saturation. © 2006 American Chemical Society.