About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
The Journal of Chemical Physics
Paper
Mixtures of hard ions and dipoles against a charged wall: The Ornstein-Zernike equation, some exact results, and the mean spherical approximation
Abstract
The Ornstein-Zernike equation for a mixture of ions and dipoles near a hard charged wall is obtained. It is shown that the same exact contact and monotonicity theorems, previously derived for the primitive (continuum dielectric) case, also are valid for this model. Rather simple expressions for the contact density, potential difference, capacitance, and distribution functions are obtained in the mean spherical approximation (MSA). These expressions reduce to previously known results in the limits of low and high concentrations of ions. It is found that cooperative alignment of the dipoles near the wall results in an increased potential difference and reduced capacitance of the double layer compared to that calculated when the solvent is represented by a continuum dielectric. © 1981 American Institute of Physics.