About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH 2013
Conference paper
Mixtures of bayesian joint factor analyzers for noise robust automatic speech recognition
Abstract
This paper investigates a noise robust approach to automatic speech recognition based on a mixture of Bayesian joint factor analyzers. In this approach, noisy features are modeled by two joint groups of factors accounting for speaker and noise variabilities which are estimated by clean and noisy speech respectively. The factors form an overcomplete dictionary with a redundant representation. Automatic relevance determination (ARD) is carried out by the relevance vector machine (RVM) where sparsity-promoting priors are applied on two factor loading matrices. Experiments on large vocabulary continuous speech recognition (LVCSR) tasks show good improvements by this approach. Copyright © 2013 ISCA.