About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
When searching large hypertext document collections, it is often possible that there are too many results available for ambiguous queries. Query refinement is an interactive process of query modification that can be used to narrow down the scope of search results. We propose a new method for automatically generating refinements or related terms to queries by mining anchor text for a large hypertext document collection. We show that the usage of anchor text as a basis for query refinement produces high quality refinement suggestions that are significantly better in terms of perceived usefulness compared to refinements that are derived using the document content. Furthermore, our study suggests that anchor text refinements can also be used to augment traditional query refinement algorithms based on query logs, since they typically differ in coverage and produce different refinements. Our results are based on experiments on an anchor text collection of a large corporate intranet.