About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIVR 2010
Conference paper
MI-SIFT: Mirror and inversion invariant generalization for SIFT descriptor
Abstract
The best known Scale-Invariant Feature Transform (SIFT) shows its superior performance in a variety of image processing tasks due to its distinctiveness, invariance to scale, rotation and local geometric distortion. Despite its remarkable performance, SIFT is not invariant to mirror images and grayscale-inverted images. This paper proposes an improved SIFT descriptor named MI-SIFT which keeps the advantages of the standard SIFT and is additionally invariant to mirror images and grayscale-inverted images. MI-SIFT is achieved by combining SIFT histogram bins in an elegant way at slight expense of dis-tinctiveness. Most importantly, MI-SIFT can be applied to mirror-like images and inversion-like images which are abundant in real world. Experiments show that MI-SIFT outperforms the standard SIFT on mirror-like and inversionlike images while achieve comparable performance on other images. Copyright © 2010 ACM.