Metal-Organic Framework with Space-Partition Pores by Fluorinated Anions for Benchmark C2H2/CO2 Separation
Abstract
The efficient separation of C2H2 from C2H2/CO2 or C2H2/CO2/CH4 mixtures is crucial for achieving high-purity C2H2 (>99%), essential in producing contemporary commodity chemicals. In this report, we present ZNU-12, a metal-organic framework with space-partitioned pores formed by inorganic fluorinated anions, for highly efficient C2H2/CO2 and C2H2/CO2/CH4 separation. The framework, partitioned by fluorinated SiF62- anions into three distinct cages, enables both a high C2H2 capacity (176.5 cm3/g at 298 K and 1.0 bar) and outstanding C2H2 selectivity over CO2 (13.4) and CH4 (233.5) simultaneously. Notably, we achieve a record-high C2H2 productivity (132.7, 105.9, 98.8, and 80.0 L/kg with 99.5% purity) from C2H2/CO2 (v/v = 50/50) and C2H2/CO2/CH4 (v/v = 1/1/1, 1/1/2, or 1/1/8) mixtures through a cycle of adsorption-desorption breakthrough experiments with high recovery rates. Theoretical calculations suggest the presence of potent “2 + 2” collaborative hydrogen bonds between C2H2 and two hexafluorosilicate (SiF62-) anions in the confined cavities.