Metal atoms and clusters in fullerene cages
Abstract
Fullerenes containing metal atoms and clusters can be formed by the arc-vaporization method. The electronic structure of these metallofullerenes can be probed using magnetic resonance techniques. Electron paramagnetic resonance (EPR) spectra of LaC82, YC82, ScC82 and Sc3C82 have been obtained. Metallofullerenes containing a single metal atom (MC82 with M = La, Y, or Sc), have small hyperfine couplings and g-values close to 2, implying that they can be described as + 3 metal cations within - 3 fullerene radical anion cages. In the La and Y cases, additional EPR active MC82 species have been found. The EPR spectrum of Sc3C82 shows that the metal atoms are equivalent, suggesting that they may form a triangular molecule. No EPR spectrum is found for Y2C82 or for Sc2C2n species (with 2n = 82,84,86), suggesting that they are diamagnetic. Sc NMR spectra of a solution containing Sc2C2n species have been obtained which confirm the diamagnetism of the discandium metallofullerenes. © 1993 Springer-Verlag.