About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Metal-antiferromagnetic-insulator transition in V2O3 alloys
Abstract
Electrical resistivity measurements are reported for a variety of (V1-xTix)2O3 and V2(1-y)O3 systems, with 0≤x<0.06 and 0≤y<0.01, in the range 20-300 K. The metal-antiferromagnetic-insulator transition temperature TN diminishes steadily with increasing x and y and drops abruptly to zero at a critical concentration. The size of the discontinuity in electrical resistivity at TN diminishes with TN for the Ti-alloy system; for nonstoichiometric V2O3 it passes through a minimum and then rises significantly. These features can be rationalized almost quantitatively by assuming that acoustic lattice and ionized-impurity scattering processes govern the mobility of the itinerant charge carriers in the (V1-xTix)2O3 and V2(1-y)O3 systems, respectively. © 1983 The American Physical Society.