About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Metallurgical Transactions A
Paper
Martensitic transformation in Cu-2be alloys induced by explosive cladding
Abstract
Formation of a lath-type structure was observed at a distance greater than 100 ώm from the bond interface created by explosive cladding. The laths were found to have a strong deviation from cubic symmetry and to contain numerous internal faults. The electron diffraction patterns do not fit any equilibrium or metastable phase known to exist in a Cu-2Be alloy. Crystallographic analysis based on electron diffraction showed that the laths have an orthorhombic structure. It is postulated that the orthorhombic phase results from a shear (martensitic) transformation which takes place in the a (fcc) phase during cladding. The proposed model assumes that shear occurs on the (111) plane in the [112] direction, and the orientation relationship is suggested to be [100]ORTH(M)∥[110]α and (001)ORTH(M) II (111)α, which is consistent with electron diffraction results. The transformation causes a volume decrease of 1.1 pct. Formation of the new phase was observed only in the solution-treated specimens of Cu-2Be and not in those aged prior to cladding. It is suggested that this may be a result of different stacking fault energies. © 1986 The Metallurgical of Society of AIME.