About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Morphology and kinetics of crystallization of amorphous V75Si25 thin-alloy films
Abstract
Electrical and microstructural changes of coevaporated V75Si25 alloy thin films have been studied as a function of temperature from room temperature to 830°C. In situ resistivity measurements, hot-stage transmission electron microscopy, Rutherford backscattering spectroscopy and the Seeman-Bohlin glancing angle incidence x-ray diffraction technique were applied. Upon heat treatment at a heating rate of 8°C/min, a sharp decrease in resistivity occurs at ∼670°C which results from an amorphous to crystalline phase transformation. The crystallized phase was identified as V3Si. The mechanism of transformation is random nucleation at a rapidly decreasing rate and a fast quasi-isotropic growth. The kinetics of crystallization have been studied by utilizing electrical resistivity measurements during isothermal heat treatment. Six different temperatures between 570°C and 630°C were adopted. The apparent activation energy (∼3.6 eV) obtained from isothermal measurements was found to be in agreement with that obtained from nonisothermal treatments at varying rates of heating. The distinct change of the Avrami mode parameter from 4 to 2 at a constant value of t/τ during the process of crystallization is not immediately understood.