Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Entity resolution (ER) is the task of identifying different representations of the same real-world entities across databases. It is a key step for knowledge base creation and text mining. Recent adaptation of deep learning methods for ER mitigates the need for dataset-specific feature engineering by constructing distributed representations of entity records. While these methods achieve state-of-the-art performance over benchmark data, they require large amounts of labeled data, which are typically unavailable in realistic ER applications. In this paper, we develop a deep learning-based method that targets low-resource settings for ER through a novel combination of transfer learning and active learning. We design an architecture that allows us to learn a transferable model from a high-resource setting to a low-resource one. To further adapt to the target dataset, we incorporate active learning that carefully selects a few informative examples to fine-tune the transferred model. Empirical evaluation demonstrates that our method achieves comparable, if not better, performance compared to state-of-the-art learning-based methods while using an order of magnitude fewer labels.
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Chen-chia Chang, Wan-hsuan Lin, et al.
ICML 2025
Gang Liu, Michael Sun, et al.
ICLR 2025
Daniel Karl I. Weidele, Hendrik Strobelt, et al.
SysML 2019