About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Local structural and compositional determination via electron scattering: Heterogeneous Cu(001)-Pd surface alloy
Abstract
We have measured the structure and chemical composition of ultrathin Pd films on Cu(001) using low-energy electron microscopy. We determine their local stoichiometry and structure, with 8.5 nm lateral spatial resolution, by quantitatively analyzing the scattered electron intensity and comparing it to dynamical scattering calculations, as in a conventional low-energy electron diffraction (LEED)-IV analysis. The average t -matrix approximation is used to calculate the total atomic scattering matrices for this random substitutional alloy. As in the traditional LEED analysis, the structural and compositional parameters are determined by comparing the computed diffraction intensity of a trial structure to that measured in experiment. Monte Carlo simulations show how the spatial and compositional inhomogeneity can be used to understand the energetics of Cu-Pd bonding. © 2007 The American Physical Society.