About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of the ACM
Paper
Linear-time approximation schemes for clustering problems in any dimensions
Abstract
We present a general approach for designing approximation algorithms for a fundamental class of geometric clustering problems in arbitrary dimensions. More specifically, our approach leads to simple randomized algorithms for the k-means, k-median and discrete k-means problems that yield (1+ε) approximations with probability ≥ 1/2 and running times of O(2(k/ε)O(1)dn). These are the first algorithms for these problems whose running times are linear in the size of the input (nd for n points in d dimensions) assuming k and ε are fixed. Our method is general enough to be applicable to clustering problems satisfying certain simple properties and is likely to have further applications. © 2010 ACM.