About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COLING 2018
Conference paper
Learning sentiment composition from sentiment lexicons
Abstract
Sentiment composition is a fundamental sentiment analysis problem. Previous work relied on manual rules and manually-created lexical resources such as negator lists, or learned a composition function from sentiment-annotated phrases or sentences. We propose a new approach for learning sentiment composition from a large, unlabeled corpus, which only requires a word-level sentiment lexicon for supervision. We automatically generate large sentiment lexicons of bigrams and unigrams, from which we induce a set of lexicons for a variety of sentiment composition processes. The effectiveness of our approach is confirmed through manual annotation, as well as sentiment classification experiments with both phrase-level and sentence-level benchmarks.