About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Risk culture is arguably a leading contributor to risk outcomes of a firm. We define risk culture indicators based on unstructured news data to develop a qualitative assessment of risk culture of banks. For US banks participating in an annual stress test program, we conduct a supervised learning ridge regression analysis to identify the most significant features to evaluate banks’ risk culture characteristics. These features are used for unsupervised clustering to determine the high to low quality of risk culture. The distinct groups obtained from clustering define and allow monitoring changes in the quality of risk culture in banks.