About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Pattern Recognition
Paper
Learning fingerprint minutiae location and type
Abstract
For simplicity of pattern recognition system design, a sequential approach consisting of sensing, feature extraction and classification/ matching is conventionally adopted, where each stage transforms its input relatively independently. In practice, the interaction between these modules is limited. Some of the errors in this end-to-end sequential processing can be eliminated, especially for the feature extraction stage, by revisiting the input pattern. We propose a feedforward of the original grayscale image data to a feature (minutiae) verification stage in the context of a minutiae-based fingerprint verification system. This minutiae verification stage is based on reexamining the grayscale profile in a detected minutia's spatial neighborhood in the sensed image. We also show that a feature refinement (minutiae classification) stage that assigns one of two class labels to each detected minutia (ridge ending and ridge bifurcation) can improve the matching accuracy by ∼1% and when combined with the proposed minutiae verification stage, the matching accuracy can be improved by ∼3.2% on our fingerprint database. © 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.