About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2011
Conference paper
Latent graphical models for quantifying and predicting patent quality
Abstract
The number of patents filed each year has increased dramatically in recent years, raising concerns that patents of questionable validity are restricting the issuance of truly innovative patents. For this reason, there is a strong demand to develop an objective model to quantify patent quality and characterize the attributes that lead to higher-quality patents. In this paper, we develop a latent graphical model to infer patent quality from related measurements. In addition, we extract advanced lexical features via natural language processing techniques to capture the quality measures such as clarity of claims, originality, and importance of cited prior art. We demonstrate the effectiveness of our approach by validating its predictions with previous court decisions of litigated patents. Copyright 2011 ACM.