About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A - AMO
Paper
Kinetic energy in density-functional theory
Abstract
While Kohn-Sham theory uses the quantum-mechanical operator for kinetic energy, Thomas-Fermi theory replaces this with an effective local potential. If both theories are based on the exact universal density functional defined by Hohenberg-Kohn theory, it is an interesting question whether they should give the same results for [Formula Presented]-electron ground states. This question is examined and answered in the negative. The inconsistency is resolved only by extending the definition of functional derivatives to encompass linear operators. An exact theory must incorporate one-electron energies and occupation numbers derived from Kohn-Sham theory. © 1998 The American Physical Society.