About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Irreversible altering of crystalline phase of phase-change Ge-Sb thin films
Abstract
The stability of the crystalline phase of binary phase-change Gex Sb1-x films is investigated over a wide range of Ge content. From Raman spectroscopy we find the Ge-Sb crystalline structure irreversibly altered after exposure to a laser beam. We show that with increasing beam intensity/temperature Ge agglomerates and precipitates out in the amount growing with x. A simple empirical relation links Ge precipitation temperature T Ge p to the rate of change d Tcryst /dx of crystallization, with the precipitation easiest on the mid-range x plateau, where Tcryst is nearly constant. Our findings point to a preferable 15%≤x≤50% window, that may achieve the desired cycling/archival properties of a phase-change cell. © 2010 American Institute of Physics.