About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Electron Devices
Paper
Investigation of thermal crosstalk between SOI FETs by the subthreshold sensing technique
Abstract
Experimental-modeling investigation of the transient thermal crosstalk between the field-effect transistors implemented on a silicon-on-insulator substrate is reported. The measurements were performed using a high-speed electrical pulse-probe sampling technique, which allowed detection of thermally modulated subthreshold currents. The technique achieved a temperature resolution of ∼ 50 mK, a time resolution of 5 ns, and a temperature sensitivity of ∼ 0.6 μA/K. The finite-element method was used to solve the heat diffusion equation and to obtain the temperature profiles for the given device structures. The combined high-resolution experimental-simulation approach allowed the study of the thermal crosstalk between two adjacent devices and probe the local temperature at different locations of the structure. The effects of the interface quality, layer thickness, material selection, and interdevice spacing on the heat diffusion and device performance were investigated in detail. © 2008 IEEE.