About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A - AMO
Paper
Investigating the limits of randomized benchmarking protocols
Abstract
In this paper, we analyze the performance of randomized benchmarking protocols on gate sets under a variety of realistic error models that include systematic rotations, amplitude damping, leakage to higher levels, and 1/f noise. We find that, in almost all cases, benchmarking provides better than a factor-of-2 estimate of average error rate, suggesting that randomized benchmarking protocols are a valuable tool for verification and validation of quantum operations. In addition, we derive models for fidelity decay curves under certain types of non-Markovian noise models such as 1/f and leakage errors. We also show that, provided the standard error of the fidelity measurements is small, only a small number of trials are required for high-confidence estimation of gate errors. © 2014 American Physical Society.