About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
J. of Opt. Comm. and Netw.
Paper
Intra-node high-performance computing network architecture with nanosecond-scale photonic switches
Abstract
We propose a single-stage network architecture for intra-node connectivity that makes use of nanosecond-scale photonic switches. Although buffering at the switch points is of vital importance for complex multistage networks, this is not the case for smaller-scale single-stage networks where the end nodes are located only one hop apart. By limiting the buffering to the end points, the proposed architecture manages to minimize the required electro-optic and opto-electronic conversions, leading in this way to both low end-to-end latency and better energy efficiency. Combining these advantages with nanosecond-scale switching times can allow for high-throughput operation, even for frequent switch reconfigurations. The performance of the proposed architecture is evaluated via discrete-event simulations for a wide range of synthetic-traffic cases. The simulation results show that high-throughput operation of ≥ 90% ≥90 can be achieved even for small message sizes, i.e., 32 KB for all-to-all communication and 2 KB for uniform random traffic, at a data rate of 400 Gb/s and a switch reconfiguration time of ≤ 72; ns≤72ns. Moreover, if 100 ns reconfiguration times are achievable as opposed to 150 ns, then for the all-to-all traffic case a 16% and 28% reduction in completion time can be achieved for message sizes of 8 KB and 1 KB, respectively. In a forthcoming era of optically interfaced processors and accelerators, nanosecond-scale photonic switches appear as a highly promising solution for keeping up with the intra-node bandwidth scaling due to their high-bandwidth, low-latency, and fast-switching capabilities.