About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJNDC
Paper
IntegrityMR: Exploring result integrity assurance solutions for big data computing applications
Abstract
Large-scale adoption of MapReduce applications on public clouds is hindered by the lack of trust on the participating virtual machines deployed on the public cloud. In this paper, we propose IntegrityMR, a multi-public clouds architecture-based solution, which performs the MapReduce-based result integrity check techniques at two alternative layers: the task layer and the application layer. Our experimental results show that solutions in both layers offer a high result integrity but non-negligible performance overheads.