Publication
ACS AMI
Paper

Independent control of adhesive and bulk properties of hybrid silica coatings on polycarbonate

View publication

Abstract

Transparent polymers are widely used in many applications ranging from automotive windows to microelectronics packaging. However, their intrinsic characteristics, in particular their mechanical properties, are significantly degraded with exposure to different weather conditions. For instance, under humid environment or UV-irradiation, polycarbonate (PC) undergoes depolymerization, leading to the release of Bisphenol A, a molecule presumed to be a hormonal disruptor, potentially causing health problems. This is a serious concern and the new REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances) program dictates that materials releasing Bisphenol A should be removed from the market by January 1st, 2015 (2012-1442 law). Manufacturers have tried to satisfy this new regulation by depositing atop the PC a dense oxide-like protective coating that would act as a barrier layer. While high hardness, modulus, and density can be achieved by this approach, these coatings suffer from poor adhesion to the PC as evidenced by the numerous delamination events occurring under low scratch constraints. Here, we show that the combination of a N2/H2-plasma treatment of PC before depositing a hybrid organic-inorganic solution leads to a coating displaying elevated hardness, modulus, and density, along with a very high adherence to PC (> 20 J/m2 as measured by double cantilever beam test). In this study, the sol-gel coatings were composed of hybrid O/I silica (based on organoalkoxysilanes and colloidal silica) and designed to favor covalent bonding between the hybrid network and the surface treated PC, hence increasing the contribution of the plastic deformation from the substrate. Interestingly, double-cantilever beam (DCB) tests showed that the coating's adhesion to PC was the same irrespective of the organoalkoxysilanes/colloidal silica ratio. The versatility of the sol-gel deposition techniques (dip-coating, spray-coating, etc.), together with the excellent mechanical properties and exceptional adherence of this hybrid material to PC should lead to interesting new applications in diverse fields: optical eye-glasses, medical materials, packaging, and so forth. © 2013 American Chemical Society.

Date

22 Oct 2013

Publication

ACS AMI