About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry B
Paper
In situ study of the growth kinetics of individual island electrodeposition of copper
Abstract
The growth kinetics for individual islands during electrodeposition of copper have been studied using in situ transmission electron microscopy. We show that for sufficiently large overpotentials, the growth kinetics approach the rate laws expected for diffusion-limited growth of hemispherical islands, characterized by two distinct regimes. At short times, the island growth exponent is 0.5 as expected for diffusion-limited growth of uncoupled hemispherical islands, while at longer times, the growth exponent approaches 1/6 as expected for planar diffusion to the growing islands. These results provide the first direct measurements of the growth of individual islands during electrochemical deposition. However, quantitative comparison with rate laws shows that the island radii are smaller than predicted and the island densities are much larger than predicted, and we suggest that this is related to adatom formation and surface diffusion, processes which are not included in conventional growth models. © 2006 American Chemical Society.