About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Science
Paper
Impurity-driven cone formation during laser sputtering of graphite
Abstract
Sputtering of highly oriented pyrolytic graphite (HOPG) by 248-nanometer laser radiation was studied. Neutral carbon atoms and small clusters were ejected with significantly higher translational energies than were expected from a simple model of thermal vaporization in the absence of a potential barrier. The HOPG also developed a remarkable surface morphology that consists of regular cones and domes. Cone formation appears to be initiated by trace metal impurities that serve as heat shunts in this highly anisotropic material.