About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Polymer Science, Part B: Polymer Physics
Paper
Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4′-ODA
Abstract
Para-, meta-, and mixed isomeric poly(amic ethyl ester) precursors of the polyimide based on pyromellitic dianhydride (PMDA) and 3,4′-oxydianiline (3,4′-ODA) were synthesized. The intrinsic viscosity of each of the isomers was measured in an NMP solution and found to be less than corresponding isomers derived from PMDA and 4,4′-oxydianiline (4,4′-ODA) precursors with comparable molecular weight. The imidization and solvent retention were measured as a function of imidization temperatures, Ti using forward recoil spectrometry (FRES). For samples cast from a single solvent, either N-methyl pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), no difference was observed in the temperature-dependent imidization behavior between the isomers. In all cases the imide fraction f increased as Ti increased, and reached a value of unity, i.e., full conversion at 400°C. At the same Ti, samples cast from DMSO showed a slightly higher f than samples cast from NMP. FRES and time of flight FRES (TOFFRES) were used to measure the interdiffusion distance, w, of deuterium-labeled tracers into nondeuterated base layers of the polyimide of PMDA/3,4′-ODA treated at various Ti. The primary determinant of w for all isomers was Ti, and the particular isomer used as either the base or the tracer molecule did not seem to affect w. © 1998 John Wiley & Sons, Inc.