About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Imaging of the schottky barriers and charge depletion in carbon nanotube transistors
Abstract
The photovoltage produced by local illumination at the Schottky contacts of carbon nanotube field-effect transistors varies substantially with gate voltage. This is particularly pronounced in ambipolar nanotube transistors where the photovoltage switches sign as the device changes from p-type to n-type. The detailed transition through the insulating state can be recorded by mapping the open-circuit photovoltage as a function of excitation position. These photovoltage images show that the band-bending length can grow to many microns when the device is depleted. In our palladium-contacted devices, the Schottky barrier for electrons is much higher than that for holes, explaining the higher p-type current in the transistor. The depletion width is 1.5 μm near the n-type threshold and smaller than our resolution of 400 nm near the p-type threshold. Internal photoemission from the metal contact to the carbon nanotube and thermally assisted tunneling through the Schottky barrier are observed in addition to the photocurrent that is generated inside the carbon nanotube. © 2007 American Chemical Society.