About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICIP 2003
Conference paper
Image segmentation by spatially adaptive color and texture features
Abstract
We present an image segmentation algorithm that is based on spatially adaptive color and texture features. The proposed algorithm is based on a previously proposed algorithm but introduces a number of new elements. We use a new set of texture features based on a steerable filter decomposition. The steerable filters combined with a new spatial texture segmentation scheme provide a finer and more robust segmentation into texture classes. The proposed algorithm includes an elaborate border estimation procedure, which extends the idea of Pappas' adaptive clustering segmentation algorithm to color texture. The performance of the proposed algorithm is demonstrated in the domain of photographic images, including low resolution compressed images.