Reasoning about Noisy Sensors in the Situation Calculus
Fahiem Bacchus, Joseph Y. Halpern, et al.
IJCAI 1995
We study the problem of robust human detection. In this paper, a new descriptor, Pyramidal Statistics of Oriented Filtering (PSOF), is proposed for human shape representation. Unlike traditional one-scale gradient-based methods, the PSOF descriptor utilizes a Gabor filter bank to obtain multi-scale pixel-level orientation information and makes use of locally normalized pyramidal statistics of these Gabor responses to represent object shape, which shows great robustness to image noise and blur. Besides, to exclude detection outliers that violate perspective projection in image sequence, a geometrical model is learned online to describe the relationship between object's average height and the foot-point coordinate. Experimental results on both static images and video sequences show that PSOF detector performs much better than one of the state-of-the-art detectors. © 2012 Elsevier B.V.
Fahiem Bacchus, Joseph Y. Halpern, et al.
IJCAI 1995
Sarath Swaminathan, Nathaniel Park, et al.
NeurIPS 2025
Yi Zhou, Parikshit Ram, et al.
ICLR 2023
Saeel Sandeep Nachane, Ojas Gramopadhye, et al.
EMNLP 2024