About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FOCS 2011
Conference paper
How to play unique games against a semi-random adversary: Study of semi-random models of unique games
Abstract
In this paper, we study the average case complexity of the Unique Games problem. We propose a semi-random model, in which a unique game instance is generated in several steps. First an adversary selects a completely satisfiable instance of Unique Games, then she chooses an ε-fraction of all edges, and finally replaces ("corrupts") the constraints corresponding to these edges with new constraints. If all steps are adversarial, the adversary can obtain any (1-ε)-satisfiable instance, so then the problem is as hard as in the worst case. We show however that we can find a solution satisfying a (1-δ) fraction of all constraints in polynomial-time if at least one step is random (we require that the average degree of the graph is Ω(log k)). Our result holds only for ε less than some absolute constant. We prove that if ε ≥ 1/2, then the problem is hard in one of the models, that is, no polynomial-time algorithm can distinguish between the following two cases: (i) the instance is a (1-ε)-satisfiable semi-random instance and (ii) the instance is at most δ-satisfiable (for every δ > 0); the result assumes the 2-to-2 conjecture. Finally, we study semi-random instances of Unique Games that are at most (1-ε)-satisfiable. We present an algorithm that distinguishes between the case when the instance is a semi-random instance and the case when the instance is an (arbitrary) (1-δ)-satisfiable instances if ε gt; cδ (for some absolute constant c). © 2011 IEEE.