About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Langmuir
Paper
High-throughput directed self-assembly of core-shell ferrimagnetic nanoparticle arrays
Abstract
Magnetic nanoparticles (MNPs) provide a set of building blocks for constructing stimuli-responsive nanoscale materials with properties that are unique to this scale. The size and the composition of MNPs are tunable to meet the requirements for a range of applications including biosensors and data storage. Although many of these technologies would significantly benefit from the organization of nanoparticles into higher-order architectures, the precise placement and arrangement of nanoparticles over large areas of a surface remain a challenge. Herein, we demonstrate the viability of magnetic nanoparticles for patterned recording media utilizing a template-directed self-assembly process to afford well-defined nanostructures of magnetic nanoparticles and access these assemblies using magnetic force microscopy and a magnetic recording head. Photolithographically defined holes were utilized as templates to form assemblies of ferrimagnetic nanoparticle rings or pillars selectively over a large area (>1 cm2) in just 30 s. This approach is applicable to other nanoparticle systems as well and enables their high-throughput self-assembly for future advanced device fabrication. © 2013 American Chemical Society.