About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2013
Conference paper
Hartigan's k-means versus Lloyd's k-means - Is it time for a change?
Abstract
Hartigan's method for k-means clustering holds several potential advantages compared to the classical and prevalent optimization heuristic known as Lloyd's algorithm. E.g., it was recently shown that the set of local minima of Hartigan's algorithm is a subset of those of Lloyd's method. We develop a closed-form expression that allows to establish Hartigan's method for κ-means clustering with any Bregman divergence, and further strengthen the case of preferring Hartigan's algorithm over Lloyd's algorithm. Specifically, we characterize a range of problems with various noise levels of the inputs, for which any random partition represents a local minimum for Lloyd's algorithm, while Hartigan's algorithm easily converges to the correct solution. Extensive experiments on synthetic and real-world data further support our theoretical analysis.