About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Growth temperature dependence of interfacial abruptness in Si/Ge heteroepitaxy studied by Raman spectroscopy and medium energy ion scattering
Abstract
The influence of growth temperature on the interfacial abruptness of strained Ge layers, a few monolayers thick, embedded in Si has been studied using Raman spectroscopy to identify the presence of GeGe and GeSi bonds and medium energy ion scattering to characterize the spatial extent of the layers. Atomically sharp interfaces are observed for growth temperatures just above the crystalline to amorphous transition range, with pseudomorphic growth found for growth temperatures >∼250°C. Asymmetric mixing of Ge into the Si capping layer occurs during growth at higher temperatures. Significantly less intermixing occurs on annealing after growth, pointing to the role of dynamical processes occurring at the growth front.