About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Science
Paper
Growth of high aspect ratio nanometer-scale magnets with chemical vapor deposition and scanning tunneling microscopy
Abstract
A combination of chemical vapor deposition and scanning tunneling microscopy techniques have been used to produce nanometer-scale, iron-containing deposits with high aspect ratios from an iron pentacarbonyl precursor both on a substrate and on the tunneling tip itself. The structure and composition of the resulting nanodeposits were determined by transmission electron microscopy and high spatial resolution Auger electron spectroscopy. Either polycrystalline, relatively pure, body-centered-cubic iron or disordered carbon-rich material can be deposited, depending on the bias conditions of the tip sample junction and the precursor pressure. Two mechanisms of decomposition are inferred from the growth phenomenology.