About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TIP
Paper
Greedy Batch-Based Minimum-Cost Flows for Tracking Multiple Objects
Abstract
Minimum-cost flow algorithms have recently achieved state-of-the-art results in multi-object tracking. However, they rely on the whole image sequence as input. When deployed in real-time applications or in distributed settings, these algorithms first operate on short batches of frames and then stitch the results into full trajectories. This decoupled strategy is prone to errors because the batch-based tracking errors may propagate to the final trajectories and cannot be corrected by other batches. In this paper, we propose a greedy batch-based minimum-cost flow approach for tracking multiple objects. Unlike existing approaches that conduct batch-based tracking and stitching sequentially, we optimize consecutive batches jointly so that the tracking results on one batch may benefit the results on the other. Specifically, we apply a generalized minimum-cost flows (MCF) algorithm on each batch and generate a set of conflicting trajectories. These trajectories comprise the ones with high probabilities, but also those with low probabilities potentially missed by detectors and trackers. We then apply the generalized MCF again to obtain the optimal matching between trajectories from consecutive batches. Our proposed approach is simple, effective, and does not require training. We demonstrate the power of our approach on data sets of different scenarios.