About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Optics Letters
Paper
Gray-scale data pages for digital holographic data storage
Abstract
The prospects for gray-scale (or multilevel) digital holographic data storage are theoretically and experimentally investigated. A simple signal-to-noise ratio (SNR) partitioning argument shows that when SNR scales as 1 over the number of holograms squared, five gray levels (log2 5 bits/pixel) would be expected to result in a 15% capacity increase over binary data pages. However, the additional signal-dependent noise sources present in practical systems create a baseline SNR that reduces both the optimal number of gray levels and the resulting gain in capacity. To implement gray-scale recording experimentally, we adapt the predistortion technique previously developed for binary page-oriented memories [Opt. Lett. 23, 289 (1998)]. Several new block-based modulation codes for decoding gray-scale data pages are introduced. User capacity is evaluated by an experimental technique using LiNbO3:Fe in the 90° geometry. Experimental results show that a balanced modulation code with three gray levels provides a 30% increase in capacity (as well as a 30% increase in readout rate) over local binary thresholding. © 1998 Optical Society of America.