About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IBM J. Res. Dev
Paper
Geometric tolerancing: I. Virtual boundary requirements
Abstract
We examine the representation of geometric tolerances in solid-geometric models from the perspective of two classes of functional requirements. The first class deals with positioning of parts with respect to one another in an assembly, and the second with maintaining material bulk in critical portions of parts. Both are directly relatable to the geometry of the parts. Through examples, we demonstrate that these functional requirements can be captured in a specific form of tolerances designated as virtual boundary requirements (VBRs). We further demonstrate that the only proposed theory of tolerances in solid models, and the current dimensioning and tolerancing standards in industrial practice, are both inadequate for dealing with VBRs. Accordingly, we develop a theoretical basis for the rigorous statement and interpretation of VBRs.