About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Geometric approach to measure-based metric in image segmentation
Abstract
The Mumford-Shah functional and related algorithms for image segmentation involve a tradeoff between a two-dimensional image structure and one-dimensional parametric curves (contours) that surround objects or distinct regions in the image. We propose an alternative functional that is independent of parameterization; it is a geometric functional given in terms of the surfaces representing the data and image in the feature space. The Γ-convergence technique is combined with the minimal surfaces theory to yield a global generalization of the Mumford-Shah segmentation function. © 2008 Springer Science+Business Media, LLC.