About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Generalization of a circuit theory for current perpendicular to plane magnetoresistance and current-driven torque
Abstract
Extensions of an existing circuit theory for current perpendicular to plane magnetoresistance and current-driven torque in noncollinear magnetic-multilayer pillar devices are presented. Our expressions for monodomain critical-current threshold Jc and giant magnetoresistance ΔR are firstly derived in terms of assumed spin-channel resistances for each of the two ferromagnets. Spinflips are thus neglected. We find a class of closed linear relationships connecting Jc -1 and ΔR. We then derive more general expressions for these quantities which take into account spin-flip relaxation. In this case, we assume analytically calculable linear 2×2 current-voltage matrices for the separate two-channel ferromagnets. These expressions again lead to a class of closed linear relationships connecting Jc -1 and ΔR. The latter generalization gives a simple theoretical framework to take into account bulk and interfacial spin flip and more complicated multilayer structures often used in experiments. © 2006 The American Physical Society.