About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Control Systems
Paper
Gaussian Processes for Learning and Control: A Tutorial with Examples
Abstract
Many challenging real-world control problems require adaptation and learning in the presence of uncertainty. Examples of these challenging domains include aircraft adaptive control under uncertain disturbances [1], [2], multiple-vehicle tracking with space-dependent uncertain dynamics [3], [4], robotic-arm control [5], blimp control [6], [7], mobile robot tracking and localization [8], [9], cart-pole systems and unicycle control [10], gait optimization in legged robots [11] and snake robots [12], and any other system whose dynamics are uncertain and for which limited data are available for model learning. Classical model reference adaptive control (MRAC) [13]-[15] and reinforcement learning (RL) methods [16]-[23] have been developed to address these challenges and rely on parametric adaptive elements or control policies whose number of parameters or features are fixed and determined a priori. One example of such an adaptive model are radial basis function networks (RBFNs), with RBF centers pre-allocated based on expected operating domains [24], [25].